SAINIK SCHOOL GOPALGANJ

ASSIGNMENT ON CHAPTER-4 (DETERMINANTS)

CLASS - XII

If a, b and c are all positive and are pth, qth and rth terms of a GP, then what is 1.

the value of determinant $\begin{vmatrix} loga & p & 1 \\ logb & q & 1 \\ logc & r & 1 \end{vmatrix}$?

If $A^2 - A + I = 0$, then find the inverse of A. 2.

 $\begin{vmatrix} x+1 & 3 & 5 \\ 2 & x+2 & 5 \\ 2 & 2 & x+4 \end{vmatrix} = 0$, then find the value of x. 3.

Let $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$. If AX = B, then find the value of X. 4.

Using properties of determinants Prove that $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} =$ 5. $(a + b + c)^3$

- If $\begin{vmatrix} 1 & a & a^3 \\ 1 & b & b^3 \end{vmatrix} = k.(a-b).(b-c).(c-a)$, then find the value of k. 6.
- 7. Using matrices , Solve the system of linear equations 2x + 3y + 3z = 5, x - 2y + z = -4 and 3x - y - 2z = 3.
- Use the product $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 3 \\ 3 & 2 & 4 \end{bmatrix}$, $\begin{bmatrix} 2 & 0 & 1 \\ 9 & 2 & 3 \\ 6 & 1 & 2 \end{bmatrix}$ to solve the system of equations 8.

$$x - y + 2z = 1$$
, $2y - 3z = 1$, $3x - 2y + 4z = 2$

For the A = $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & 1 & 2 \end{bmatrix}$, show that A³- 6A² +5A +11.I = O, hence find A⁻¹. 9.

10. Using properties of determinants Prove that
$$\begin{vmatrix} 1+a & 1 & 1\\ 1 & 1+b & 1\\ 1 & 1 & 1+c \end{vmatrix} =$$

$$abc . (1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c})$$